C++ isrfun - Part Six
at Turbine/Warner Bros.!

Syllabus

1) First program and introduction to data types and control structures with
applications for games learning how to use the programming environment Mar 25-27
2) Objects, encapsulation, abstract data types, data protection and scope April 1-3
3) Basic data structures and how to use them, opening files and performing
operations on files -- We’'re here April 8-10

4) Algorithms on data structures, algorithms for specific tasks, simple AI and planning
type algorithms, game Al algorithms April 15-17

Project 1 Due — April 17

5) More Al: search, heuristics, optimization, decision trees, supervised/unsupervised
learning — April 22-24

6) Game API and/or event-oriented programming, model view controller, map reduce
filter — April 29, May 1

7) Basic threads models and some simple databases SQLite May 6-8

8) Graphics programming, shaders, textures, 3D models and rotations May 13-15
Project 2 Due May 15

9) How to download an API and learn how to use functions in that API, Windows
Foundation Classes May 20-22

10) Designing and implementing a simple game in C++ May 27-29

11) Selected topics — Gesture recognition & depth controllers like the Microsoft
Kinect, Network Programming & TCP/IP, OSC June 3-5

12) Working on student projects - June 10-12

Final project presentations Project 3/Final Project Due June 12

Project 1 due in 1 week

* Therefore, we're going to spend time in class
working on the project, last 30 minutes of
class

Class Activity: Pointers and memory
management!

#include "stdafx.h"

// This program uses the & operator to determine a variable’s
// address and the sizeof operator to determine its size.
#include <iostream>

using namespace std;

int main()

{
int x = 25;
cout << "The address of x is " << &x << endl;
cout << "The size of x is " << sizeof(x) << " bytes\n";
cout << "The value in x is " << X << endl;
system("PAUSE");
return 0;

}

The address of x is 0029FE74
The size of x is 4 bytes

The value in x is 25

Press any key to continue.. ..

Pointer Variables

CONCEPT: Pointer variables, which are often just called pointers, are designed to
hold memory addresses. With pointer variables you can indirectly
manipulate data stored in other variables.

A pointer variable, which often is just called a pointer, is a special variable that holds a
memory address. Just as int variables are designed to hold integers, and double variables
are designed to hold floating-point numbers, pointer variables are designed to hold mem-
ory addresses.

Memory addresses identify specific locations in the computer’s memory. Because a pointer
variable holds a memory address, it can be used to hold the location of some other piece
of data. This should give you a clue as to why it is called a pointer: It “points” to some
piece of data that is stored in the computer’s memory. Pointer variables also allow you to
work with the data that they point to.

int* ptr;

This style of definition might visually reinforce the fact that ptr’s data type is not int, but
pointer-to-int. Both definition styles are correct.

Program 9-2 demonstrates a very simple usage of a pointer: storing and printing the
address of another variable.

Program 9-2
1 // This program stores the address of a variable in a pointer.

#include <iostream>
using namespace std;

w N

NS

5 int main()

6

7 int x = 25; // int variable

8 int *ptr; // Pointer variable, can point to an int
9

10 ptr = &x; // Store the address of x in ptr

11 cout << "The value in x is " << x << endl;

12 cout << "The address of x is " << ptr << endl;

13 return 0;

14}

Program Output

The value in x is 25
The address of x is 0x7e00

Figure 9-4 illustrates the relationship between ptr and x.

Figure 9-4

ptr
0x7e00

25

Address of x: 0x7e00

The real benefit of pointers is that they allow you to indirectly access and modify the vari-
able being pointed to. In Program 9-2, for instance, ptr could be used to change the con-
tents of the variable x. This is done with the indirection operator, which is an asterisk (*).
When the indirection operator is placed in front of a pointer variable name, it dereferences
the pointer. When you are working with a dereferenced pointer, you are actually working
with the value the pointer is pointing to. This is demonstrated in Program 9-3.

Program 9-3

1 // This program demonstrates the use of the indirection operator.
2 #include <iostream>

3 using namespace std;

-

5 int main()

6 A

7 int x = 25; // int variable

8 int *ptr; // Pointer variable, can point to an int
9
10 ptr = &x; // Store the address of x in ptr
11
12 // Use both x and ptr to display the value in x.
13 cout << "Here is the value in X, printed twice:\n";
14 cout << x << endl; // Displays the contents of x
15 cout << *ptr << endl; // Displays the contents of x
16
17 // Assign 100 to the location pointed to by ptr. This
18 // will actually assign 100 to x.
19 *ptr = 100;
20
21 // Use both x and ptr to display the value in x.
22 cout << "Once again, here is the value in x:\n";
23 cout << x << endl; // Displays the contents of x
24 cout << *ptr << endl; // Displays the contents of x
25 return 0;
26}

Class Activity: Use the indirection

operator

#include "stdafx.h"

// This program demonstrates the use of the indirection operator.
#include <iostream>

using namespace std;

int main()

{

int x = 25; // int variable
int *ptr; // Pointer variable, can point to an int
ptr = &x; // Store the address of x in ptr

// Use both x and ptr to display the value in x.
cout << "Here is the value in x, printed twice:\n";
cout << x << endl; // Displays the contents of x
cout << *ptr << endl; // Displays the contents of x

// Assign 100 to the location pointed to by ptr. This
// will actually assign 100 to x.
*ptr = 100;

// Use both x and ptr to display the value in x.
cout << "Once again, here is the value in x:\n";
cout << x << endl; // Displays the contents of x
cout << *ptr << endl; // Displays the contents of x
system("PAUSE");

return 9;

)|

93 The Relationship Between Arrays and Pointers

1 CONCEPT: Array names can be used as constant pointers, and pointers can be used
as array names.

You learned in Chapter 7 that an array name, without brackets and a subscript, actually
represents the starting address of the array. This means that an array name is really a
pointer. Program 9-5 illustrates this by showing an array name being used with the indi-
rection operator.

Program 9-5

1 // This program shows an array name being dereferenced with the *
2 // operator.

3 #include <iostream>

4 using namespace std;

5

6 int main()

A

8 short numbers[] = {10, 20, 30, 40, 50};

9
10 cout << "The first element of the array is ";
11 cout << *numbers << endl;
12 return 0;
13}

Program Output
The first element of the array is 10

Figure 9-5

numbers[0] numbers[1] numbers[2] numbers[3] numbers[4]

T
|
|
I

I

T
I
I
I
I

f

numbers

one to numbers, you are actually adding 1 * sizeof(short) to numbers. If you add two
to numbers, the result is numbers + 2 * sizeof(short), and so forth. On a PC, this
means the following are true, because short integers typically use two bytes:

*(numbers + 1) is actually *(numbers + 1 * 2)
*(numbers + 2) is actually *(numbers + 2 * 2)
*(numbers + 3) is actually *(numbers + 3 * 2)

and so forth.

This automatic conversion means that an element in an array can be retrieved by using
its subscript or by adding its subscript to a pointer to the array. If the expression
*numbers, which is the same as *(numbers + 0), retrieves the first element in the array,
then *(numbers + 1) retrieves the second element. Likewise, *(numbers + 2) retrieves
the third element, and so forth. Figure 9-6 shows the equivalence of subscript notation
and pointer notation.

Figure 9-6

numbers[0] numbers[1] numbers|[2] numbers[3] numbers| 4]

I

I——
I

! I I l l

*numbers *(numbers+l) *(numbers+2) *(numbers+3) *(numbers+4)

NOTE: The parentheses are critical when adding values to pointers. The * operator has
O precedence over the + operator, so the expression *number + 1 is not equivalent to
*(number + 1) . *number + 1 adds one to the contents of the first element of the array,
while *(number + 1) adds one to the address in number, then dereferences it.

Class Activity: Access array using
pointer notation

#include "stdafx.h"

// This program shows an array name being dereferenced with the *
// operator.

#include <iostream>

using namespace std;

int main()

{
int numbers[] = {10, 20, 30, 40, 50};
cout << "The first element of the array is ";
cout << *numbers << endl;
cout << "The second element of the array is “;
cout << *(numbers+l) << endl;
cout << "The third element of the array is ";
cout << *(numbers+2) << endl;
cout << "The second element of the array is not ";
cout << *numbers+l << endl;
system("PAUSE");
return 0;
} When working with arrays, remember the following rule:

arrayf index] is equivalent to *(array + index)

Array names are pointer constants

The only difference between array names and pointer variables is that you cannot change
the address an array name points to. For example, consider the following definitions:

double readings[20], totals[20];
double *dptr;

These statements are legal:

dptr = readings; // Make dptr point to readings.
dptr totals; // Make dptr point to totals.

Burt these are illegal:

readings = totals; // ILLEGAL! Cannot change readings.
totals = dptr; // ILLEGAL! Cannot change totals.

Array names are pointer constants. You can’t make them point to anything but the array
they represent.

Pointer arithmetic

Pointer Arithmetic
CONCEPT: Some mathematical operations may be performed on pointers.

The contents of pointer variables may be changed with mathematical statements that per-
form addition or subtraction. This is demonstrated in Program 9-9. The first loop incre-
ments the pointer variable, stepping it through each element of the array. The second loop
decrements the pointer, stepping it through the array backward.

Not all arithmetic operations may be performed on pointers. For example, you cannot
multiply or divide a pointer. The following operations are allowable:

® The ++ and -- operators may be used to increment or decrement a pointer variable.

* An integer may be added to or subtracted from a pointer variable. This may be
performed with the + and - operators, or the += and -= operators.

* A pointer may be subtracted from another pointer.

Class Activity: Pointer Arithmetic

#include "stdafx.h"
// This program uses a pointer to display the contents of an array.
#include <iostream>
using namespace std;
int main()
{
const int SIZE = 8;
int set[SIZE] = {5, 10, 15, 20, 25, 30, 35, 40};
int *numPtr; // Pointer
int count; // Counter variable for loops
// Make numPtr point to the set array.
numPtr = set;
// Use the pointer to display the array contents.
cout << "The numbers in set are:\n";
for (count = @; count < SIZE; count++)

{

cout << *numPtr << ;
numPtr++;
¥
// Display the array contents in reverse order.
cout << "\nThe numbers in set backward are:\n";
for (count = @; count < SIZE; count++)
{
numPtr--;
cout << *numPtr << " ";
}
system("Pause");
return 9;

Pointer to an array vs. array of pointers

int main(){
int (*iptr)[50];
// int* iptr[50];
// Error 1 error C2440: '=' : cannot convert from 'int (*)[50]' to 'int *[50]°'
iptr = new int[100000000][50];
cout << iptr;
system("Pause");
return 0;

/* The trick is to parenthisize the pointer declaration.
This informs C++ that you want a pointer to an array, rather than array of pointers.
Writing
int (*a)[10];
declares that a is a pointer to an array of 10 ints. By constrast,
int *a[1@];
declares that a is an array of 10 pointers to ints.
Instead of writing
object (*ptr)[10] = new object[5][10];
or
object (*ptr)[10][15] = new object[5][10][15];
you must write
typedef object (*ObjectArray)[5][10][15];
ObjectArray ptr = (ObjectArray) new object[5][10][15];
You would also have to dereference the array whenever you refer to an element. For example,
(*ptr)[4][3][2] = o;
*/

Or use a vector then you do not need to free the memory, because the std::vector
destructor will do it for you.

Checking return value of new

But what if there isn’t enough free memory to accommodate the requestz What if the
program asks for a chunk large enough to hold a 100,000-element array of floats,
and that much memory isn’t available? When memory cannot be dynamically allo-
cated, C++ throws an exception and terminates the program. Throwing an exception
means the program signals that an error has occurred. You will learn more about
exceptions in Chapter 16.

Programs created with older C++ compilers behave differently when memory cannot be
dynamically allocated. Under older compilers, the new operator returns the address 0, or
NULL when it fails to allocate the requested amount of memory. (NULL is a named con-
stant, defined in the iostream file, that stands for address 0.) A program created with an
older compiler should always check to see if the new operator returns NULL, as shown in
the following code:

iptr = new int[100];

if (iptr == NULL)

{
cout << "Error allocating memory! \n";
return;

N

The null pointer

NOTE: A pointer that contains the address 0 is called a null pointer.

The if statement determines whether iptr points to address 0. If it does, then the new
operator was unable to allocate enough memory for the array. In this case, an error mes-
sage is displayed and the return statement terminates the function.

WARNING! The address 0 is considered an unusable address. Most computers store
special operating system data structures in the lower areas of memory. Anytime you use
the new operator with an older compiler, you should always test the pointer for the NULL
address before you use it.

When a program is finished using a dynamically allocated chunk of memory, it should
release it for future use. The delete operator is used to free memory that was allocated
with new. Here is an example of how delete is used to free a single variable, pointed to
by iptr:

delete iptr;

If iptr points to a dynamically allocated array, the [] symbol must be placed berween
delete and iptr:

delete [] iptr;

Pointers to Objects, too

Pointers to Objects

You can also define pointers to class objects. For example, the following statement defines
a pointer variable named rectpPtr:

Rectangle *rectPtr;

The rectPtr variable is not an object, but it can hold the address of a Rectangle object.
The following code shows an example.

Rectangle myRectangle; // A Rectangle object
Rectangle *rectPtr; // A Rectangle pointer
rectPtr = &myRectangle; // rectPtr now points to myRectangle

The first statement creates a Rectangle object named myRectangle. The second statement
creates a Rectangle pointer named rectPtr. The third statement stores the address of the
myRectangle object in the rectPtr pointer. This is illustrated in Figure 13-10.

// This program demonstrates a simple class.
#include <iostream>
using namespace std;

// Rectangle class declaration.
class Rectangle
{
private:
double width;
double length;
public:
void setWidth(double);
void setLength(double);
double getWidth() const;
double getLength() const;
double getArea() const;

Figure 13-10

The rectPtr pointer variable
holds the address of the

The myRectangle object
myRectangle object i s o

width:
length:

address

Y

The rectpPtr pointer can then be used to call member functions by using the -> operator.
The following statements show examples.

rectPtr->setWidth(12. 5);
rectPtr->setLength(4. 8);

The first statement calls the setwidth member function, passing 12.5 as an argument.
Because rectPtr points to the myRectangle object, this will cause 12.5 to be stored in
the myRectangle object’s width variable. The second statement calls the setLength
member function, passing 4.8 as an argument. This will cause 4.8 to be stored in the

Figure 13-11

The rectPtr pointer variable
holds the address of the

The myRectangle object
myRectangle object myRectangle obje

width:
length:

Y

address

Class object pointers can be used to dynamically allocate objects. The following code
shows an example.

1 // Define a Rectangle pointer.

2 Rectangle *rectPtr;

3

4 // Dynamically allocate a Rectangle object.
5 rectPtr = new Rectangle;

6

7 // Store values in the object's width and length.
% rectPtr->setWidth(10.0);

9 rectPtr->setLength(15.0);

10

11 // Delete the object from memory.

12 delete rectPtr;

13 rectPtr = 0;

int main(){

//
//

To hold a number
The total area

double number;
double totalArea;

Rectangle *kitchen; // To point to
Rectangle *bedroom; // To point to
Rectangle *den; // To point to

// Dynamically allocate the objects.
kitchen = new Rectangle;

bedroom = new Rectangle;

den = new Rectangle;

// Get the kitchen dimensions.

cout << "What is the kitchen's length? ";

cin >> number;
kitchen->setLength(number);

cout << "What is the kitchen's width? *;
cin >> number;
kitchen->setWidth(number);

// Get the bedroom dimensions.

cout << "What is the bedroom's length? ";

cin >> number;
bedroom->setLength(number);

cout << "What is the bedroom's width? ";
cin >> number;
bedroom->setWidth(number);

// Get the den dimensions.

cout << "What is the den's length? ";
cin >> number;
den->setLength(number);

cout << "What is the den's width? ";
cin >> number;

den->setWidth(number);

kitchen dimensions
bedroom dimensions
den dimensions

// Get the length
// Store in kitchen

// Get the width
// Store in kitchen

// Get the length
// Store in bedroom

// Get the width
// Store in bedroom

// Get the length

object

object

object

object

// Store in den object

// Get the width

// Store in den object

// Calculate the total area of the three rooms.

totalArea =

// Display the total area of the three rooms.

cout <«

// Delete the objects from memory.
delete kitchen;

delete bedroom;

delete den;

"The total area of the three rooms is

kitchen = 0; // Make kitchen point to null.
bedroom = 0; // Make bedroom point to null.
den = 0; // Make den point to null.

return 0;

kitchen->getArea() + bedroom->getArea() + den->getArea();

<< totalArea << endl;

Class Activity: Install GLUT, and compile
and run a simple OpenGL program

&= Simplelight l _J

http://www.math.ucsd.edu/~sbuss/MathCG/OpenGLsoft/SimpleLight/SimplelLight.html

Simplelight illustrates the use Phong lighting in OpenGL. It draws six spheres of different
colors, and makes a white light revolve around the spheres. It consists of two source

files, SimpleLight.c and SimpleLight.h. There are several options available for downloading
this program:

SimpleLightProject.zip: A zip file, including the source files, Microsoft Visual C++ workspace
and project files, and Win32 executable.

SimpleLight.zip: A zip file, with sources files and the executable.

SimpleLight.c and SimpleLight.h and SimpleLight.exe: Download the two source files and
the executable, one at a time.

Installing GLUT

If GLUT is not installed, you can install it by downloading the

glut zip file (v. 3.7.6) (web site) and copying its files as follows:

sruntime library:

C:\Program Files\Microsoft Visual Studio *\VC\bin\glut32.dlII

["Program Files (x86)" for 64-bit Windows; The "' matches your version of VS: 11.0 for VS2012, 10.0 for VS2010,
9.0 for VS2008]

*header file:

C:\Program Files\Microsoft Visual Studio *\VC\include\GL\glut.h

["Program Files (x86)" for 64-bit Windows; You have to create the "GL" directory]
elinker library:

C:\Program Files\Microsoft Visual Studio *\VC\lib\glut32.lib

["Program Files (x86)" for 64-bit Windows]

Managing keyboard input in GLUT

// glutKeyboardFunc is called below to set this function to handle

all "normal" key presses.

void myKeyboardFunc(unsigned char key, int x, int y)

//

{
switch (
case 'r':
case 's':
case '1':
case 27:
}

key) {

RunMode = 1-RunMode;

if (RunMode==1) {
glutPostRedisplay();

}

break;

RunMode = 1;
drawScene();
RunMode = 0;
break;

LightIsPositional = 1 - LightIsPositional;
if (RunMode==0) {
drawScene();
}
break;
// Escape key
exit(1);

// Toggle to opposite value

// Toggle local light mode

Overview of the main()
function in GLUT

// Main routine
// Set up OpenGL, define the callbacks and start the main loop
int main(int argc, char** argv)
{
glutInit(&argc,argv);
// We're going to animate it, so double buffer
glutInitDisplayMode (GLUT DOUBLE | GLUT_RGB | GLUT_DEPTH);
// Window position (from top corner), and size (width% and hieght)
glutInitWindowPosition(10, 60);
glutInitWindowSize(360, 360);
glutCreateWindow("SimpleLight");
// Initialize OpenGL parameters.
initRendering();
// Set up callback functions for key presses
glutKeyboardFunc(myKeyboardFunc); // Handles "normal" ascii symbols
glutSpecialFunc(mySpecialKeyFunc); // Handles "special" keyboard keys
// Set up the callback function for resizing windows
glutReshapeFunc(resizeWindow);
// Call this for background processing
// glutIdleFunc(myIdleFunction);
// Call this whenever window needs redrawing
glutDisplayFunc(drawScene);
fprintf(stdout, "Arrow keys control speed. Press \"r\" to run, \"s\" to single step.\n");

// Start the main loop. glutMainLoop never returns.
glutMainLoop();
return(9); // This line is never reached.

3D and 2D graphics and OpenGL
provide some nice alternatives to the
console...

http://sourceforge.net/projects/ogl-samples/files/latest/download

http://www.cmake.org/files/v2.8/cmake-2.8.10.2-win32-x86.exe

S /cygdrive/c/Program\ Files/CMake\ 2.8/bin/cmake.exe CMakelLists.txt

-- Building for: Visual Studio 11

-- The C compiler identification is MSVC 17.0.50727.1

-- The CXX compiler identification is MSVC 17.0.50727.1

-- Check for working C compiler using: Visual Studio 11

-- Check for working C compiler using: Visual Studio 11 -- works
-- Detecting C compiler ABI info

-- Detecting C compiler ABI info - done

-- Check for working CXX compiler using: Visual Studio 11

-- Check for working CXX compiler using: Visual Studio 11 -- works
-- Detecting CXX compiler ABI info

-- Detecting CXX compiler ABI info - done

-- Found OpenGL: opengl32

-- Configuring done

-- Generating done

OpenGL Software Development Kit

penG ® DOCUMENTATION, SAMPLE CODE, LIBRARIES, AND TOOLS

FOR CREATING OPENGL-BASED APPLICATIONS

SDK Home Documentation Libraries Tutorials Tools Forums

OpenGL SDK

Welcome to the OpenGL SDK! Here you'll find some of the most valuable resources available to OpenGL developers, all in one place
above to navigate to each contribution. Revisit often, as there will be new contributions coming online all the time!

-- Build files have been written to: C:/russell/TurbineWarnerBros/ogl-samples-4.3.2.1/ogl-

samples-4.3.2.1

GPU Programming

https://developer.nvidia.com/nvidia-visual-profiler

NVIDIA Visual Profiler

The NVIDIA Visual Profiler is a cross-platform performance profiling tool that
delivers developers vital feedback for optimizing CUDA C/C++ applications. First
introduced in 2008, Visual Profiler supports all 350 million+ CUDA capable NVIDIA
GPUs shipped since 2006 on Linux, Mac 0OS X, and Windows. The NVIDIA Visual
Profiler is available as part of the CUDA Toolkit.

e Learn Viore .

CUDA 5" CUDA 5%

Production Re}gas' 3 Features a‘nd ngef

Widget toolkits enable GUIs and user
interfaces beyond the console

http://www.vtk.org/

Search

Tell'us what you think

PROJECT RESOURCES HELP OPEN SOURCE

The Visualization Toolkit (VTK) is an open-source, freely available software system for
3D computer graphics, image processing and visualization. VTK consists of a C++ class Kitware receives HPCwire’s Editors’ Choice
library and several interpreted interface layers including Tcl/Tk, Java, and Python. Kitware, Award for VTK.

whose team created and continues to extend the toolkit, offers professional support and

consulting services for VTK. VTK supports a wide variety of visualization algorithms Learn More>

including: scalar, vector, tensor, texture, and volumetric methods; and advanced modeling
techniques such as: implicit modeling, polygon reduction, mesh smoothing, cutting,
contouring, and Delaunay triangulation. VTK has an extensive information visualization
framework, has a suite of 3D interaction widgets, supports parallel processing, and
integrates with various databases on GUI toolkits such as Qt and Tk. VTK is cross-platform

and runs on Linux, Windows, Mac and Unix platforms.

Editors’ Choice
Awards

News More News >

01.31.2013 Kitware Provides Mobile Visualization Support for the Visible Pat...

wxWidgets

http://www.wxwidgets.org/

'F. wxWidgets

Cross-Platform GUI Library

Home About Downloads Documentation Support Developers

ann
DEES (¥ WO

W e 8518 Conlgaratin ofmere
o B

wxWidgets is a C++ library that lets developers create applications for
Windows, OS X, Linux and UNIX on 32-bit and 64-bit architectures as
well as several mobile platforms including Windows Mobile, iPhone SDK and
embedded GTK+. It has popular language bindings for Python, Perl, Ruby
and many other languages. Unlike other cross-platform toolkits, wxWidgets
gives its applications a truly native look and feel because it uses the
platform's native API rather than emulating the GUI. It's also extensive,

. . . N dis W ienedt e 5] e e S
free, open-source and mature. Why not give it a try, like many others oo NG semsioel s
have? — L 18 :

Learn More or Download Now T

1)

2)

Homework #3 Exercises for
next Monday (pick 2)

19. Stock Profit

The profit from the sale of a stock can be calculated as follows:
Profit = ((NS x SP) - SC) - ((NS x PP) + PC)

where NS is the number of shares, SP is the sale price per share, SC is the sale commis-
sion paid, PP is the purchase price per share, and PC is the purchase commission paid.
If the calculation yields a positive value, then the sale of the stock resulted in a profit.
If the calculation yields a negative number, then the sale resulted in a loss.

Write a function that accepts as arguments the number of shares, the purchase price
per share, the purchase commission paid, the sale price per share, and the sale com-
mission paid. The function should return the profit (or loss) from the sale of stock.

Demonstrate the function in a program that asks the user to enter the necessary data
and displays the amount of the profit or loss.

49. An application uses a two-dimensional array defined as follows.

int days[29][5];

Write code that sums each row in the array and displays the results.

Write code that sums each column in the array and displays the results.

3)

4)

Array Allocator

Write a function that dynamically allocates an array of integers. The function should
accept an integer argument indicating the number of elements to allocate. The func-
tion should return a pointer to the array.

True or False

2l-
S
38
34.
s
36.

27
38.

i
40.
41.

42,
43.

44,
45.
46.
47.

o e T B B B
o e | e | [

-
"

-

-~

~

|
i

= - = -
]] B ey B e

F

Each byte of memory is assigned a unique address.
The * operator is used to get the address of a variable.
Pointer variables are designed to hold addresses.

The & symbol is called the indirection operator.

The & operator dereferences a pointer.

When the indirection operator is used with a pointer variable, you are actually
working with the value the pointer is pointing to.

Array names cannot be dereferenced with the indirection operator.

When you add a value to a pointer, you are actually adding that number times
the size of the data type referenced by the pointer.

The address operator is not needed to assign an array’s address to a pointer.
You can change the address that an array name points to.

Any mathemartical operation, including multiplication and division, may be
performed on a pointer.

Pointers may be compared using the relational operators.

When used as function parameters, reference variables are much easier to work
with than pointers.

The new operator dynamically allocates memory.
A pointer variable that has not been initialized is called a null pointer.
The address 0 is generally considered unusable.

In using a pointer with the delete operator, it is not necessary for the pointer
to have been previously used with the new operator.

5) Implement three different pointer casts such as dynamic_cast,
__try_cast, static_cast, reinterpret_cast, const_cast, C-Style Casts
as described in

http://msdn.microsoft.com/en-us/library/aa712854(v=vs.71).aspx

